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Abstract. Bivariate, hyperbolic third-order linear partial differential
operators under the gauge transformations L → g(x, y)−1 ◦ L ◦ g(x, y)
are considered. The existence of a factorization, the existence of a factor-
ization that extends a given factorization of the symbol of the operator
are expressed in terms of the invariants of some known generating set
of invariants. The operation of taking the formal adjoint can be also de-
fined for equivalent classes of LPDOs, and explicit formulae defining this
operation in the space invariants were obtained.

1 Introduction

Nowadays, constructive factorization algorithms are greatly in demand, being
used in recent algorithms for the exact solution of Linear Partial Differential
Equations (LPDEs). For example, they are used in the numerous generaliza-
tions and modifications of the 18th-century Laplace-Transformations Method,
in the Loewy decomposition method, and in other methods (see for example [1–
6]). Both the property of having a factorization, and the property of having a
factorization that extends a certain factorization of the (principal) symbol are
invariant under Gauge transformations of LPDOs, viz. L → g(x, y)−1◦L◦g(x, y),
and therefore can be described invariantly in terms of the invariants of a gener-
ating set of invariants, if such a set is known.

The Laplace Transformations Method [7] is an example of the use of an
invariant description of factorization properties for a second-order hyperbolic
operator. The normalized form of such operators is

L = Dx ◦Dy + aDx + bDy + c , (1)

where all the coefficients are functions of x and y, and the Laplace invariants

h = c− ax − ab, k = c− by − ab (2)

form a generating set of invariants with respect to the Gauge transformations.
It is easy to see that L is factorable if and only if h or k is zero. Moreover, the



factorization of the principal symbol Sym(L) = X · Y can be extended if and
only if h = 0, while Sym(L) = Y ·X can be extended if and only if k = 0.

The method of Laplace starts with an initial operator L and applies two
transformations L → L1 and L → L−1 called Laplace transformations until one
of the transformed operators is factorable (the Laplace transformations are ad-
mitted by operators of the form (1)). The Laplace invariants of the transformed
operators L1 and L−1 can be expressed in terms of the invariants of the initial
operator:

h1 = 2h− k − ∂xy(ln |h|), k1 = h, h−1 = k, k−1 = 2k − h− ∂xy(ln |k|) .

So assuming that L is not factorable, and so h 6= 0, k 6= 0, only one invariant
for each of the transformed operators can vanish. In such the way, instead of a
sequence of operators, one considers the chain of their Laplace invariants

. . . ↔ k−2 ↔ k−1 ↔ k ↔ h ↔ h1 ↔ h2 ↔ . . . . (3)

One iterates the Laplace transformations until one of the Laplace invariants
in the sequence (3) vanishes. In this case, one can solve the corresponding trans-
formed equation in quadratures and then use the inverse substitution to obtain
the complete solution of the original equation. What is more, one may prove
(see for example [8]) that if the chain (3) is finite in both directions, then one
may obtain a quadrature-free expression for the general solution of the original
equation.

In the case considered by Laplace, the invariants h and k can be simply
obtained from the incomplete factorizations, L = (Dx + b) ◦ (Dy + a) + h =
(Dy + a) ◦ (Dx + b) + k. That is why the invariant necessary and sufficient
conditions of factorizations becomes so simple (h = 0 or k = 0). For hyperbolic
operators of the next order — order three — the situation become much more
difficult: the “remainder” of an incomplete factorization is not invariant in the
generic case, and the invariant conditions are not trivial.

In the present paper we find invariant necessary and sufficient conditions of
factorizations extending given (we consider all the possibilities) factorizations of
the principal symbol of third-order bivariate hyperbolic linear partial differential
operators. These invariant conditions are given in terms of invariants of the
generating set of invariants found in [9]. Also in the scope of the paper we
investigate the classical operation of taking the formal adjoint of an operator,
define it on the equivalent classes of the considered LPDOs, and obtain explicit
formulae in the space of invariants. Some instances of the latter result allow us
to reduce the number of case considerations when finding an invariant definition
of the property of the existence of a factorization.

The paper is organized as follows. In Section 2 preliminaries facts and def-
initions are given. In Section 3 we discuss connections between factorization of
LPDOs and invariants of a family of LPDOs under the gauge transformations,
also we show how we reduce the number of factorization types to consider to just
four ones. In Sections 4, 5, and 6, the existence of factorizations of these four
factorization types has been expressed in terms of invariants of the generating



system of invariants found in [9]. In Section 7 the operation of taking the formal
adjoint is defined in the space of invariants.

2 Definitions and Notations

Consider a field K with commuting derivations ∂x, ∂y acting on it. Consider the
ring of linear differential operators K[D] = K[Dx, Dy], where Dx, Dy correspond
to the derivations ∂x, ∂y, respectively. In K[D] the variables Dx, Dy commute
with each other, but not with elements of K. For a ∈ K we have the relation
Dia = aDi +∂i(a). Any operator L ∈ K[D] is of the form L =

∑d
i+j=0 aijD

i
xDj

y,
where aij ∈ K. The polynomial SymL =

∑
i+j=d aijX

iY j in formal variables
X, Y is called the (principal) symbol of L. An operator L ∈ K[D] is said to be
hyperbolic if its symbol is completely factorable (all factors are of first order)
and each factor has multiplicity one.

Let K∗ denote the set of invertible elements in K. For L ∈ K[D] and every
g ∈ K∗ consider the gauge transformation L → g−1 ◦ L ◦ g. Then an algebraic
differential expression I in coefficients of L is invariant under the gauge trans-
formations (we consider only these in the present paper) if it is unaltered by
these transformations. Trivial examples of invariants are the coefficients of the
symbol of the operator. A generating set of invariants is a basis in which all
possible differential invariants can be expressed.

We use the usual abbreviations: LPDO for Linear Partial Differential Oper-
ator, LPDE for Linear Partial Differential Equation.

3 Factorization via Invariants

Any hyperbolic third-order LPDO in some system of coordinates has the form

L = (pDx + qDy)DxDy +
2∑

i+j=0

aijD
i
xDj

y , (4)

where all the coefficients belong to K (they are some functions of x and y) and
where p, q 6= 0.

Remark 1. Note that the normalized form of such operators is slightly simpler
than above, namely, one can put without loss of generality p = 1. The introduc-
tion of the parameter p makes all the reasoning symmetric with respect to x and
y, and therefore reduces the number of cases requiring consideration on the way
to our main goal.

Operators of the form (4) admit gauge transformations, and p, q are the trivial
invariants.



Theorem 1. [9] The following form a generating set of invariants for operators
of the form (4):

Ip = p ,
Iq = q ,
I1 = 2q2a20 − qa11p + 2a02p

2 ,
I2 = −qp2a02y + a02p

2qy + q2a20xp− q2a20px ,
I3 = a10p

2 + (2qyp− 3qpy)a20 + a2
20q − a11yp2 + a11pyp + qpa20y

−a11a20p ,
I4 = a01q

2 + (2qpx − 3pqx)a02 + a2
02p− a11xq2 + a11qqx + qpa02x

−a02a11q ,
I5 = a00p

3q + 2a02p
3a20x − 2q2a2

20px − a02a10p
3 − a01a20p

2q
+ 1

2a11xpyp2q + 1
2a11ypxp2q + ( 1

2pxyp2q − pxpypq)a11

+a11pqa20px − 1
2a11xyp3q + (qqxp2 − q2pxp)a20y − 2a02p

2a20px

−a11p
2qa20x + (qp2qy − pq2py)a20x + 2q2a20a20xp+

(qqxyp2 − q2pxyp + 4q2pxpy − 2qpxqyp− 2qqxppy)a20

+a20a11a02p
2 .





(5)

Any set of values of these invariants uniquely defines an equivalent class of
operators of the form (4). All the invariant properties of such operators can be
described in terms of the invariants of the above generating set.

Lemma 1. The property of having a factorization (or a factorization extending
a certain factorization of the symbol) is invariant.

Proof. Let L = F1◦F2◦ . . .◦Fk, for some operators Fi ∈ K[D]. For every g ∈ K∗

g−1 ◦ L ◦ g =
(
g−1 ◦ F1 ◦ g

) ◦ (
g−1 ◦ F2 ◦ g

) ◦ . . . ◦ (
g−1 ◦ Fk ◦ g

)
,

and since the gauge transformations do not alter the symbol of an LPDO, we
prove the statement of the theorem.

Remark 2. Recall that as for two LPDOs L1, L2 ∈ K[D] we have

SymL1◦L2
= SymL1

· SymL2
,

any factorization of an LPDO extends some factorization of its symbol. In gen-
eral, if L ∈ K[D] and SymL = S1 · . . . · Sk, then we say that the factorization

L = F1 ◦ . . . ◦ Fk, SymFi
= Si, ∀i ∈ {1, . . . , k},

is of the factorization type (S1) . . . (Sk).

Consider all possible factorizations of the symbol of an LPDO (4), namely
SymL = (pX + qY )XY . Owing to the non-commutativity of LPDOs one has
to consider factorizations of the polynomial SymL assuming that factors do not
commute. Thus SymL = (pX + qY )XY has 12 different factorizations:

(S)(XY ) ,



(XY )(S) ,

(X)(Y S) , (Y )(XS) ,

(Y S)(X) , (XS)(Y ) ,

(S)(X)(Y ) , (S)(Y )(X) ,

(X)(S)(Y ) , (Y )(S)(X) ,

(X)(Y )(S) , (Y )(X)(S) ,

where S = (pX + qY ). By Remark (1) it is enough to consider one of the
factorizations for each of the lines of the list above. Thus, there are seven cases
to consider. Proceeding further, we can almost half this number of cases (i.e. 7
cases) once we know how to express generating invariants of the formal adjoint
L† of an LPDO L in terms of generating invariants of L. In Section 7 we find
such formulae, and so only the the following cases need to be considered:

(S)(XY ) ,

(X)(Y S) ,

(S)(X)(Y ) ,

(X)(S)(Y ) .

4 Factorization Type (pX + qY )(XY )

Theorem 2. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (pX +qY )(XY ) if and only if the following two conditions
hold.

I3q
3 − I4p

3 + pq(pI1x − qI1y) + pq(qy − px)I1 + 2(pyq2 − qxp2)I1 − 3pqI2 = 0 ,
IsI2 + Ir + 2pq2I2x + q3I2y = 0 .

Proof. First, using the formulae of the invariants (5), we express the coefficients
a11, a10, a01, a00 of (4) in terms of these invariants and a20, a02. We have, for
example, a11 = (−I1 +2q2a20 +2a02p

2)/(pq), and other expressions are too large
to give them here explicitly. Then an operator (4) of the class has factorization
F(pX+qY )(XY ) = (pDx+qDy+r)◦(Dxy+aDx+bDy+c), where all the coefficients
are functions of x and y, takes place if and only if L−F(pX+qY )(XY ) = 0. Equating
the coefficients at Dxx, Dxy, Dyy, Dy on the both sides of this equality, one
computes

a = a20/p , b = a02/q , r = − 1
pq

I1 +
q2a20 + a02p

2

pq
,

c = (I4p
2 − qpI1x + 2q3pa20x + (2qxp + qpx)I1 − 2q3pxa20

+a02a20q
2p− q2p2a02y + qp2a02qy)/(q3p2)

as p and q are known to be different from zero. While equating the coefficients of
Dx and the “free” coefficients of both sides of that, we get two conditions for the



existence of a factorization, which still involve the coefficients a20 and a02 and,
therefore, are not invariant. On the other hand, by Lemma 1, there should be
a way to describe existence of a factorization (a factorization extending certain
factorization of the symbol) invariantly.

Consider the first condition, which after multiplication by p2q3, can be no-
ticed to be equivalent to the following constrain for invariants of L:

C10 = I3q
3−I4p

3+pq(pI1x−qI1y)+pq(qy−px)I1+2(pyq2−qxp2)I1−3pqI2 = 0 .
(6)

Consider the second condition multiplied for convenience on both sides by
p2q4 (denote the result as C00 = 0). It is a large expression. Consider all the
terms of C00 with second-order derivatives of a20, a02:

−2p2q4a20xx ,−pq5a20xy , 2q3p3a02xy , 2p2q4a02yy .

Thus, subtracting 2pq2I2x + q3I2y from C00, we cancel the terms with second-
order derivatives of a20, a02. Denote the result of the subtraction by C001. Con-
sider terms of C001 containing first-order derivatives of a20, a02:

q3(I1 + 2q2py + 2qpqy + 4p2qx + 4pqpx − 3a02p
2)a20x , (7)

−q2p(I1 + 2q2py + 2qpqy + 4p2qx + 4pqpx − 3a02p
2)a02y , (8)

and compare them with those in I2. One can see that the ratio of the coefficient
at a20x in (7) to that in I2 equals to the ratio of the coefficient at a02y in (8) to
that in I2, and this ratio is

s = Is − 3pqa02 ,

where Is = q
p (4p(qpx+pqx)+2q(pqy+qpy)+I1), that is an invariant. Subtracting

sI2 from C001 (denote the result of the subtraction by C002), we cancel all the
terms contaning first-order derivatives of a20, a02, and get

C002 = (I3q
3−I4p

3 +qp2I1x−pq2I1y +pq(qy−px)I1 +2(pyq2−qxp2)I1)a02 +Ir ,
(9)

where Ir = q3p
2 I1xy−qp2(qI4y−pI4x)+ q3

p I5 +q2p2I1xx− 3q2pqx

2 I1y +pI1I4 +
(
−

2qp2qxx+6q2
xp2+q2qxpy+4qpqxpx−q2ppxx+q2pxqy− 3q2pqxy

2 +5qpqxqy+2p2
xq2−

q3pxpy

p

)
I1+3p2(qqy +pqx)I4+

(
2qx+ qpx

p

)
I2
1−pq

(
3qqy

2 +2qpx+4pqx

)
I1x−qI1I1x

is an invariant. Comparing (9) with (6), one can notice that the coefficient at
a02 in C002 equals (C10 +3pqI2). As C10 = 0 is a necessary condition for L to be
factorable with the considered factorization type, the coefficient at a02 in C002

becomes just 3pqI2. Which is fortunately is canceled in expression for C00, when
we combine the results:

C00 = (C10 + 3pqI2)a02 + (Is − 3pqa02)I2 + Ir + 2pq2I2x + q3I2y

= C10a02 + IsI2 + Ir + 2pq2I2x + q3I2y .



Corollary 1 (case p = 1). Consider equivalent classes of (4) possessing the
property p = 1, and given by the values of the invariants I1, I2, I3, I4, I5 (5). The
operators of the class have a factorization of the factorization type (X+qY )(XY )
if and only if

{
I3q

3 − I4 + q(I1x − qI1y) + qqyI1 − 2qxI1 − 3qI2 = 0 ,
IsI2 + Ir + 2q2I2x + q3I2y = 0 .

where Is = q(4qx + 2qqy + I1) and Ir = q3

2 I1xy − q(qI4y − I4x) + q3I5 + q2I1xx −
3q2qx

2 I1y + I1I4 +
(
− 2qqxx + 6q2

x− 3q2qxy

2 + 5qqxqy

)
I1 + 3(qqy + qx)I4 + 2qxI2

1 −
q
(

3qqy

2 + 4qx

)
I1x − qI1I1x.

5 Factorization Type (X)(Y S)

Theorem 3. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (X)(pXY + qY 2) if and only if

{
I4 − 2qxpxq + 2q2

xp− qpqxx + q2pxx = 0 ,
−4p2qxI2 + p2qI2x + Ir = 0 ,

where Ir = −3/2qxqp2I1y + I5q
2 + 1

2I1xyq2p2 − q3pI3x + (q2pqx + 2pxq3)I3 +
(−pxyq2p + 3qxpyqp + 2qxqyp2 − 1

2qxyqp2 + pxpyq2)I1 + (−pyq2p− 1
2qyqp2)I1x.

Proof. The case we consider here is much easier than that of section 4. As we
do there first we express a00, a10, a01, a11 in terms of a20, a02 and the invariants
(5). Then for an operator L (4) of the class consider a factorization of the form

L = (Dx + r) ◦ (pDxy + qDyyaDx + bDy + c) , (10)

where all the coefficients belong to K (some functions of x and y). Substituting
just found expressions for a00, a10, a01, a11, and equating the coefficients at
Dyy, Dxx, Dxy, Dx on the both sides of (10), one computes r = (a02 − qx)/q,
a = a20, b = −(I1 − 2q2a20 − a02p

2 − p2qx + pxqp)/q/p, c = −(−I3q
2 + a20qI1 −

a2
20q

3 − a20qa02p
2 + q3pya20 + qpI1y − q3pa20y − 2qp3a02y − qypI1 + 2qyp3a02 −

2qpyI1 − qa20p
2qx + a20xq2p2)/q2/p2, as p and q are known to be different from

zero. Equating the coefficients at Dy we get first constrain on invariants,

I4 − 2qxpxq + 2q2
xp− qpqxx + q2pxx = 0 . (11)

Equating the “free” coefficients of the both sides of (10), we get a condition
of existence of a factorization in particular in terms of a20 and a02. To cancel
denominators, multiply this condition on the both sides by p3q3 (denote the
result as C00 = 0). Consider all the terms of C00 with second-order derivatives
of a20, a02:

p3q3a20xx ,−q2p4a02xy .



Thus, subtracting p2qI2x from C00, we kill all the terms with second-order deriva-
tives of a20, a02. Denote the result of the subtraction by C001. Consider terms
of C001 containing first-order derivatives of a20, a02:

−4qxp3q2a20x , 4qxqp4a02y ,

and compare them with those in I2. One can see that subtracting −4p2qxI2 from
C001 we cancel all the terms containing first-order derivatives of a20, a02. Denote
the result of this subtraction by C002, then

C002 = (I4qp
2 − 2q2p2qxpx + q3p2pxx + 2qp3q2

x − q2p3qxx)a20 + Ir , (12)

where Ir = −3/2qxqp2I1y + I5q
2 + 1

2I1xyq2p2 − q3pI3x + (q2pqx + 2pxq3)I3 +
(−pxyq2p + 3qxpyqp + 2qxqyp2 − 1

2qxyqp2 + pxpyq2)I1 + (−pyq2p− 1
2qyqp2)I1x is

an invariant. The constrain (11) implies that the coefficients at a02 in C002 is
zero provided the factorization (10) takes place. Thus, combining the results, we
have

C00 = −4p2qxI2 + p2qI2x + Ir .

Corollary 2 (case p = 1). Consider equivalent classes of (4) possessing the
property p = 1, and given by the values of the invariants I1, I2, I3, I4, I5 (5). The
operators of the class have a factorization of the factorization type (X)(XY +
qY 2) if and only if





I4 + 2q2
x − qqxx = 0 ,

I5q
2 − 4p2qxI2 + p2qI2x + 1

2I1xyq2 − I3xq3−
3
2qxI1yq − 1

2qyI1xq + qxI3q
2 + (− 1

2qxyq + 2qxqy)I1 = 0 .

6 Factorization Types (pX + qY )(X)(Y ) and
(X)(pX + qY )(Y )

Here we omit all the proofs as they employ similar to the section 4 ideas and are
much simpler.

Theorem 4. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (pX + qY )(X)(Y ) if and only if





I3q
2 − qpI1y + (qyp + 2qpy)I1 = 0 ,

I4p
2 − I1xqp + (2qxp + pxq)I1 = 0 ,

I5q
2 + (pxpq2 + 1

2qxp2q)I1y − 1
2I1xyp2q2 + (pypq2 + 1

2qyp2q)I1x+
(−3pxpyq2 − pxqypq + pxypq2 + 1

2qxyp2q − qxpypq − qxqyp2)I1 = 0 .

Theorem 5. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of



the factorization type (X)(pX + qY )(Y ) if and only if




I3q
2 − qpI1y + qypI1 + 2qpyI1 = 0 ,

2pq2
x − qpqxx + q2pxx + I4 − 2qxpxq = 0 ,

I5q
2 − 1

2p2q2I1xy + 1
2qxqp2I1y + pxq2pI1y+

(pyq2p + 1
2qyqp2)I1x + (−qxqyp2 + 1

2qxyqp2−
3pxpyq2 + pxyq2p− qxpyqp− pxqyqp)I1 = 0 .

7 Formal Adjoint

In this section we consider the operation of taking the formal adjoint of an LPDO,
and define such operation on the equivalent classes of third-order bivariate non-
hyperbolic LPDO. At the end of the section we apply this knowledge to complete
the cases’ consideration in the finding of invariant condition of the property of
the existence of a factorization of certain factorization type.

For an operator L =
∑
|J|≤d aJDJ , where aJ ∈ K, J ∈ Nn and |J | is the

sum of the components of J , the formal adjoint is defined as

L†(f) =
∑

|J|≤d

(−1)|J|DJ(aJf) , ∀f ∈ K .

The formal adjoint possesses the following useful for the factorization theory
properties:

(L†)† = L , (L1 ◦ L2)† = L†2 ◦ L†1 , SymL = (−1)ord(L)SymL† .

The property of having a factorization is invariant under the operation of taking
the formal adjoint, while the property of having a factorization of certain fac-
torization type is not invariant, and an operator L has a factorization of some
factorization type (S1)(S2) (where SymL = S1S2) if and only if L† has that of
factorization type (S2)(S1).

Lemma 2. The operation of taking the formal adjoint can be defined on the
equivalent classes of LPDOs.

Proof. Show that operation of taking the formal adjoint and the gauge transfor-
mations of LPDOs commute. For every g ∈ K∗, and f = g−1 we have

(g−1 ◦ L ◦ g)† = g† ◦ L† ◦ (g−1)† = g ◦ L† ◦ g−1 = f−1 ◦ L† ◦ f.

Example 1 (LPDOs of order 2). For operators of the form

L = Dxy + aDx + bDy + c

there is a complete generating set of invariants that consists of first-order invari-
ants: h = c− ax − ab and k = c− by − ab. For the formal adjoint

L† = Dxy − aDx − bDx + c− ax − by

they are h† = c− by − ab and k† = c− ax − ab, and so ht = k, kt = h.



Theorem 6 (formal adjoint for equivalent classes). Consider the equiva-
lent classes of (4) given by the values of the invariants I1, I2, I3, I4, I5 (5). Then
the operation of taking of the formal adjoint is defined by the following formulae

I†1 = I1 − 2q2py − 2p2qx + 2pxqp + 2qyqp ,

I†2 = −I2 − qp2qxy + qyp2qx + q2ppxy − q2pxpy ,

I†3 = −I3 + 1
q2

(
2pI2 − (2pyq + qyp)I1 + qpI1y − 2pyqyq2p+

2q3p2
y + qyyq2p2 − q3ppyy

)
,

I†4 = −I4 + 1
p2

(
− 2qI2 − (pxq + 2qxp)I1 + qpI1x + 2p3q2

x − 2p2qxqpx

+pxxq2p2 − qp3qxx

)
,

I†5 = I5 + p1I1 + p3I3 + p4I4 + p12I1y + p11I1x + p2I1xy − qpI3x − p3

q I4y + p0

−pI2y + p2

q I2x + (−2q2p3qx + 4pyq4p− q2pI1 − 2q3p2px)/(q4p)I2 ,





(13)
where p1 = (4qxpyp + pxqyp − 2qxyp2)/q + (4qxqyp2)/q2 + 3pxpy − pxyp, p3 =
2qpx + pqx, p4 = (2qyp3 + p2pyq)/q2, p0 = p3qxqyy − 2q2pxp2

y − qqxp2pyy +
q2pxppyy−qp2qyypx−2p2pyqyqx+2qqxpp2

y+2qpypqypx, p11 = −(2pypq+qyp2)/q,
p12 = −(pxpq + 2qxp2)/q.

Proof. Consider an operator L in the form (4) of some equivalent class and
express the coefficients a11, a10, a01, a00 of it in terms of the invariants (5) and
a20, a02. Then compute the formal adjoint L†, and compute the invariants (5).
The first invariant of L† is already given in terms of the invariants of L and in
the same form as in the statement of the theorem. The second invariant of L† is

I†2 = qp2a02y− qp2qxy−a02p
2qy + qyp2qx + q2ppxy− q2a20xp− q2pxpy + q2a20px .

Employing the expression for the invariant I2 we eliminate a20 and a02 from this
expression and get I†2 as it is in the statement of the theorem. Analogously, we
obtain the forms for I†3 , I†4 that are given in the statement of the theorem.

The fifth invariant I†5 of L† is a large expression containing a20 and a02, and
their second and first derivatives. The terms containing a02yy are canceled if we
add pI2y to I†5 . Then the only term containing a20xx is p3qa20xx, and we cancel
it by subtraction of p2I2x/q. Then no second-order derivatives are left, and we
notice that the ratio

C = (−2q2p3qx + 4pyq4p− q2pI1 − 2q3p2px)/(q4p)

of the coefficient for a20x in the obtained expression to that in I2 is equal to the
ratio of the coefficient for a02y in the obtained expression to that in I2. Thus,
subtracting CI2, we cancel first-order derivatives, and have as the result the
invariant expression

I55 = I5 + p1I1 + p3I3 + p4I4 + p12I1y + p11I1x + p2I1xy − qpI3x − p3

q
I4y + p0 ,



where p1 = (4qxpyp + pxqyp − 2qxyp2)/q + (4qxqyp2)/q2 + 3pxpy − pxyp, p3 =
2qpx + pqx, p4 = (2qyp3 + p2pyq)/q2, p0 = p3qxqyy − 2q2pxp2

y − qqxp2pyy +
q2pxppyy−qp2qyypx−2p2pyqyqx+2qqxpp2

y+2qpypqypx, p11 = −(2pypq+qyp2)/q,
p12 = −(pxpq + 2qxp2)/q are differential-algebraic expressions of p and q. Thus,

I†5 = I55 − pI2y +
p2

q
I2x + CI2 .

Theorem 6 is the one that allows us to half the cases necessary to consider
to describe existence of factorizations of different factorizations types. Below is
an example on how to obtain invariant conditions of existence of a factorization
of the certain type of factorizations (XY )(pX + qY ), if those are given (found
in the section 4) for the “symmetric” factorization type (pX + qY )(XY ).

Corollary 3. Consider an equivalent class of (4) given by the values of the
invariants I1, I2, I3, I4, I5 (5). Operators of the class have a factorization of fac-
torization type (XY )(pX + qY ) if and only if





0 = q0 − qpI2 + q3I3 − p3I4 ,

0 = p0 + p1I1 − 4pqqxI2 + p3I3 + p4I4 + q3

p I5 − q4I3x

−(pq2qy/2 + q3py)I1x + p3qI4x + pI1I4 + (pq3)/2I1xy

+pq2I2x − 3pq2qx/2I1y ,

where q0, p0, p1, p3, p4 are expressions of p, q and their derivations, more pre-
cisely, q0 = −2pyqyq3p+qyyq3p2−q4ppyy+q3p2pxy−q2p3qxy−pxxq2p3+qp4qxx+
2q4p2

y−2p4q2
x− q3ppxpy + qyqp3qx +2p3qxqpx, p0 = 2pq3pxqxpy−2p2q2qxqypx +

2p2q3pxxpx+8p4qqxqxx−10p4q3
x−5p3pxxq2qx−p4q2qxxx+p3q3pxxx−5p3q2qxxpx−

4p2q2p2
xqx−pq4pxxpy+14p3q2

xqpx+2p3qq2
xqy+p2q3pxxqy+p2q3qxxpy−p3q2qyqxx−

2p2q2q2
xpy, p1 = 3q2qxpy−2pqqxpx−p2qqxx−q3pxy+1/pq3pxpy+2p2q2

x+pq2pxx+
2pqqxqy − 1

2pq2qxy, p3 = 2q4px/p + q3qx, p4 = 2p2pxq + p2qqy − 5p3qx − ppyq2.

Proof. Operators of the class have a factorization of factorization type (XY )(pX+
qY ) if and only if their formal adjoints L† have a factorization of factorization
type (−pX − qY )(XY ), which by theorem 2 is true if and only if −I†3q3 +
I†4p3 + pq(−pI1tx + qI1ty)+ pq(−qy + px)I†1 +2(−pyq2 + qxp2)I†1 − 3pqI†2 = 0 and
IstI

†
2 +Irt−2pq2I2tx−q3I2ty = 0. Using the results of section 7, these conditions

can be rewritten in terms of the five invariants (5) of L, and after simplifications
the expressions given in the statement of the theorem can be obtained.

Consider the special case where p and q are constants. Then without loss of
generality one can assume p = q = 1.

Corollary 4 (case of the symbol with constant coefficients). An LPDO
(4) with p = q = 1 has a factorization of factorization type (XY )(X + Y ) if and
only if {

I3 = I2 + I4 ,
0 = I5 + 1

2I1xy + I4I1 .



8 Symbol of Constant Coefficients

In the criteria for the existence of factorizations of different factorization types,
the coefficients p and q of the symbol, and their derivatives occur fairly often.
Therefore, it is interesting to look at the structure of the formulae in the impor-
tant particular case in which p and q are constants, and, therefore, there exists
a normal form of the operator with the (principal) symbol (X + Y )XY . Thus,
without loss of generality one can assume p = q = 1, and then combining the
results of the previous sections we obtain the necessary and sufficient conditions
of the existence of factorizations for each of the 12 different types.

Theorem 7. Consider equivalent classes of (4) possesing the property p = q =
1, and given by the values of the invariants I1, I2, I3, I4, I5 (5). Operators of the
class have a factorization of factorization type

(S)(XY ) if and only if

I3 − I4 + I1x − I1y − 3I2 = 0 ,
I1I2 + Ir + 2I2x + I2y = 0 ,

}
(14)

where Ir = 1
2I1xy − I4y + I4x + I5 + I1xx + I1I4 − I1I1x;

(S)(X)(Y ) if and only if

(14) & I2 − I4 + I1x = 0 ;

(S)(Y )(X) if and only if

(14) & − 2I2 − I4 + I1x = 0 ;

(X)(SY ) if and only if

I4 = 0 & I2x + I5 − I3x + I1xy/2 = 0 ; (15)

(X)(S)(Y ) if and only if

(15). & I3 − I1y − 2I2 = 0 ;

(X)(Y )(S) if and only if
(15). & I3 = I2 ;

(XY )(S) if and only if

I4 = I3 − I2 & I1xy/2 + I1I4 + I5 = 0 .

(Y S)(X) if and only if

I4 = I1x − 2I2 & I5 = I1I2 .

(XS)(Y ) if and only if

I3 − I1y − 2I2 = 0 & I5 = I2x + I1xy/2 ;



(Y )(SX) if and only if

I3 = 0 & I5 = (I4 + I2)y + I1I2 − I1xy/2 ; (16)

(Y )(X)(S) if and only if

(16) & I4 = −I2 ;

(Y )(S)(X) if and only if

(16) & I4 − I1x = −2I2 ;

Theorem 8 (formal adjoint for equivalent classes). Consider the equiva-
lent classes of (4) possessing the properties p = 1 and q = 1 and which are given
by the values of the invariants I1, I2, I3, I4, I5 (5). Then the operation of taking
of the formal adjoint is defined by the following formulae

I†1 = I1 ,

I†2 = −I2 ,

I†3 = −I3 + 2I2 + I1y ,

I†4 = −I4 − 2I2 + I1x ,

I†5 = I5 + I1xy − I3x − I4y − I2y + I2x − I1I2 .





9 Conclusion

We obtained invariant necessary and sufficient conditions for the existence of
factorizations extending given factorizations of the principal symbol of operators
(any such factorization of the symbol corresponds to a factorization type). We
defined the classical operation of taking the formal adjoint of an operator for the
equivalent classes of the considered LPDOs. In particular, this result allows us to
reduce the number of case considerations when finding an invariant definition of
the property of the existence of a factorization. The existence criterium are found
explicitly for the factorization types (S)(XY ), (X)(Y S), (S)(X)(Y ), (X)(S)(Y ),
where S = (pX + qY ). Invariant conditions for the other eight possibilities of
factorization types can be derived from these ones, and consideration of the most
difficult case (XY )(S) is provided as an example of such derivation.

For the future, it would be interesting to find such conditions in an algorith-
mic way for operators of general order. Another line of investigations might be
the derivation of invariant conditions for generalized factorization in the sense
of Tsarev [6].
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